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Abstract

The problem of estimating the half-width of a Gaussian peak arises in several areas
of chromatographic analysis as well as in nuclear magnetic resonance. In this paper we
contrast two techniques for reducing digital data to obtain the half-width. The first is
numerical integration and the second is that of curve fitting. In the numerical
integration technique we find the optimal truncation parameter such that the bias and
variance balance one another, while for curve fitting one needs to specify how many
data points to be included in the curve fit. Our investigation shows that the two
methods give about the same precision but we nevertheless recommend the curve
fitting approach because if is less sensitive to the parameters used in reducing the
data.

INTRODUCTION

There are many techniques in chemistry and physics in which useful
information can be expressed in terms of the moments of an experimentally
measured peak. For example, resolution in chromatography is generally
expressed in terms of the moments of two peaks (/-3). There are many
additional uses suggested for experimentally determined moments in the
context of chromatography (4, 5). The diffusion constant in isoelectric
focusing both in the equilibrium regime (6), and in the transient regime have
been estimated in terms of variances of Gaussian peaks (7, 8). Areas or
moments are sometimes used in the analysis of data in ultracentrifugation
(9). The determination of spectral moments plays a central role in the
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interpretation of NMR experiments (10-14). Together with these studies
there have been several investigations, mainly by simulation, of the effects of
noise on the calculation of moments from data (15-18). In addition there has
been a recent experimental study, in the context of NMR, by Hendrickson
and Tabbey (19). Of particular interest in this context is the problem of how
to optimize parameters in the estimation technique so as to minimize the
effects of digitization error, truncation error, and degradation due to noise. In
this paper we consider these factors in the estimation of the zeroth and
second moments of a Gaussian peak with additive noise. Two estimation
techniques will be considered, the first being that of numerical integration of
the data and the second being that of curve fitting to the Gaussian form,
followed by the calculation of moments of the resulting peak. In the use of
both of these techniques the experimenter needs to know how much of the
data should be retained to minimize resulting errors. In addition, it is
sometimes desirable to have an estimate of the error.

In what follows we will assume that the recorded signal representing a
single isolated Gaussian peak is of the form

S(x) = Me ™) 4 g(x), —w<x< e (1)

where M is the maximum amplitude of the noise-free signal and ¢ (x) is the
noise term. We have also assumed that baseline drift is negligible. The zeroth
through second unnormalized moments of the noise-free signal are

po = Mhy/2m, =0, Mo = Mh*/27 (2)
and the half-width of the peak is

Win=2vIndh = 2.355h (3)
We will make the further assumption that the data are available only at a set
of uniformly spaced points which we write

x;i=({+0AL,  i=0,+1,%£2, . ... (4)

where the spacing is AL, and AL is the abscissa of the observed maximum
of the noise-free signal. Therefore 8 satisties —% < € < %. The noise term at
the x; will be written as &(x;) = ¢;. These random variables will be assumed to
have the properties
0, i#j
¢ & ’ 0’ ¢ £i£j> =0.2’ l=J (5)

The signal-to-noise ratio, S/N, will then be M/o.
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NUMERICAL INTEGRATION

In the numerical integration method the rth moment will be estimated by

p,= 2 (IALYSAL (6)

(=—n

where S; = S(x;). Three sources of error are represented in this formula.
Digitization error is represented by the parameter § and AL (with a
continuously recorded signal, these are both equal to zero), and the trunca-
tion error is represented by having the limits set at 7 (when n = < this error
is equal to zero). The noise error is that due to the summation over the &,.
The sum represents a discrete approximation to an integral where the limits
of integration are +X where X = nAL.,
We will write the expression for [, as

fr=p, + Ap, +m, (7

where u, is the true rth moment, Au(n, 6, AL) is the combination of
digitization and truncation errors, and n,(n, AL) is the random error. The
relevant statistical properties of 7, are a direct consequence of Eq. (5), and
are easily seen to be

(n,> =0,  <n2> =oAL X ¥ (8)

I==n

The advantage of the representation in Eq. (7) is that the two components of
error are additive so that we can determine them separately. Equation (5)
contains the properties of the random error that will be needed. If we set
a= AL/h=2.355AL/W,,, which is a dimensionless measure of the inte-
gration interval, then in the absence of noise we have the estimate

&, =M X (ALY exp [—(i + 0)2a?/2] (9)

i=-n

in which we have used the assumption that <{g > = 0. Let us consider the
case r =0 first. We can write fi, as

,L‘LO=MAL{ p) e—(i+0)2a2/2__ ) [e—(i+0)2a2/2+e~(i—0)2a2/2]}

f=—o0 i=nt+1

(10)
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The first sum on the right-hand side of this expression can be rewritten by
means of a Poisson transformation (75} as

oo

] 2
Y o0 al2— v ﬂ{ 1+22 —am2a? oo (277]0)} (11)

J=1

j=—co

We next observe that in any sensible experiment the data points will
generally be spaced more closely than W,,,/2 which implies that & < 1.
When this condition holds, the infinite series on the right-hand side of Eq.
(11) will be negligible, the largest term being of the order of 107, Thus, to an
excellent approximation, we can express fi; as

flo=Mhy/2m — MAL X [e~(+0%e%2 4 o=i=0ia®2]  (12)

=n+1

or, using the notation in Eq. (7),

Apg= — MAL ) [e—(r+0)2a2/2 + e*(i+0)2a2/2] (13)
i=n+1

since wo = Mhy/27. Similarly we find

©

Au, = — M(ALY X 1-2[e—(i+0)2c12/2 + e—-(i~0)2a2/2] (14)

i=n+1
In order to give numerical estimates of the tradeoff between truncation and

random error, we need a function that contains both factors. For even
moments it is convenient to use the relative standard deviations

Ry =< (f; — w)* > ¥y, Jj=0,2 (15)
If we adopt the notation
u; =exp [—(i + 0)2a?/2] + exp [—(i — 6)*a?/2] (16)

then we find that R, and R, can be expressed as

= > ’ N\ 2] 172
R":ﬁ%‘[(f%l "> +(2n+ 1)<?> }

(17)
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As one would expect, the contribution from the truncation errors decreases
with increasing 2, while the contribution due to a finite S/N increases as the
noise amplitude increases. If one wants to estimate the half-width, or
equivalently, the parameter 4, one starts from the estimate

Ez:ﬂz/ﬂo (18)

which is exact when there are no errors. When these errors are present, we
can write the estimate in the form

h*= (12 + S1r)/ (mo + dpo) (19)

where Ou, and du, represent all errors. Notice that the errors in the
numerator and denominator are not independent of one another. On the
assumption that duo/uo is small, we can expand the denominator and find

that to lowest order

h—n 1(86 )
=_( K2 P«0> (20)
h 2\ 1y Ko
which implies the formula
{ il S 2,172 ° 2
R,=—=m " _ [(Z (a2i2—1)u,.> +
h v 8T i=n+1
N 2 n 1/2
<?> X (a%? - 1)2] (21)

It should be noted that the same value of » has been used in the estimates of
Mo and u, in the present treatment.

Figure 1 shows a schematic representation of the Gaussian peak together
with the various quantities used to characterize the estimation procedures. In
practice one would choose a maximum abscissa of integration, X, then set n
to be the least integer greater than X/AL. Figure 2 shows curves of Ry, R,,
and R, plotted as functions of X/h. We found that the variation of these
values with changes in # tended to be much smaller than that with respect to
X/h so that the curves shown are for § = 0 here and in the remaining figures.
As one would expect, there is a minimum in each of these curves where the
truncation and noise errors are at their optimal compromise values. Several
conclusions can be drawn from the curves in Fig. 1. The first is that the
minimum in each of the curves occurs at approximately X/h = 2.25 or
equivalently, when the interval of integration, 2X, is approximately twice the
half-width. Although the curves in Fig. 2 are for the specific values « = 0.2
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F1G. 1. Schematic diagram of an isolated Gaussian peak with the definition of the sampling
interval AL and the half-width W 5. Since a sampling point occurs at x = 0 in this figure, the
offset parameter 6 is equal to zero.

04

0.3

0 1 1 |

1 2 3 4
X/h

Fi1G. 2. Curves of the relative rms errors, Ry, Ry, and R, plotted as a function of X/h for
moments estimated by numerical integration. These curves are for @ = 02, 8N=5,0=0.
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and S/N = 5, the location of the minima do not seem to depend strongly on &
for S/N > 5 so that our result can be used as a rule of thumb. For example,
when S/N =5 or 10, the minima of the curves occurred at values ranging
between 2.2 and 2.8 for values of « between 0.05 and 0.30. Although the
positions of the minima tended to be insensitive to variations in a or S/N, the
sensitivity to deviations from the minima increased markedly with a. One
expects also that estimates of higher moments than i, will be less accurate,
hence it is somewhat surprising that the minimum value of R, is so close to
that of R,. However, R, is clearly more sensitive to deviations from the
minimizing value of X/k than is R,. The effects of digitization are illustrated
in Fig. 3 which shows the error parameters R, R,, and R, plotted as
functions of a (=AL/h = 2.36AL/W,;,) for X/h at the minimizing value.

0.2 -
F12
0.1}
Rh
Ro
0 1 I
5 10 15

S/N

F1G. 3. Curves of Ry, Rj, and R ploited as a function of S/N for moments estimated by
numerical integration for &« = 0.2 and § = 0.
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The parameter R, exceeds 10% only for « > 0.25 or equivalently when there
are fewer than 10 digital points covering the half-width.

CURVE FITTING

An alternative procedure for estimating moments is to use the data to
estimate parameters of the peak and then calculate the resulting moments
from the formula so obtained. This option is only available when, as in the
present case, the functional form of the peak is known. However, the use of
curve fitting is attractive for several reasons. The foremost of these is that in
the absence of noise the procedure should, in principle, lead to an exact result
so that the truncation problem does not arise provided that the number of
available points exceeds the number of parameters to be estimated. A second
advantage is that there are several good nonlinear curve fitting routines
available. A final point is that when the baseline of the curve is not constant,
one needs to eliminate the effect by some form of curve fitting in any case as
in the recent paper by Dietrich and Gerhards (21). The possibility of curve
fitting raises the question as to its potential in comparison to numerical
integration as discussed in the last section.

To examine this question we have developed the relevant theory for curve
fitting by unweighted least squares. Specifically, we will assume that one
wants to fit a curve

2
N R x
S(x) =M ex ( - ":“) 22
(x) P\ = %52 (22)
where M and / are constants to be estimated by a least squares technique.
That is to say, we minimize the following sum of squares:

F (M, h) = Z (S(Al) - S(UAL))? (23)

=—n
where we have neglected digitization error. When the signal-to-noise ratio is
sufficiently large we can linearize the differences appearing in this last
summation, allowing us to calculate the criteria Ry, R,, and R, for this

technique. In the Appendix we give a more detailed derivation of R,,. Results
of the calculation are

n i/2
Ry = <];7> { 2 2 ((fa)* — 1) exp [—(ia)zl/An}

{=-n
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N 0 12
R,= <S> { 2 X ((ia)* — 3)? exp [*(ia)z]/A”} (24)

=—-n

. 12
Ry = < I.S\‘r> { 2’,‘=Z_,, exp [_(m)z]/A"}

0.25 -
p.20 | Rz
0.10 R,
Ro
L i 1 1 i i

0
0 0.05 0.10 0.15 0.20 0.25 0.30

a

F1G. 4. Curves of Rg, Ry, and Ry, plotted as a function of the normalized data interval « for
moments estimated by numerical integration. The curves are for S/N = 5.



13:39 25 January 2011

Downl oaded At:

1110 WEISS AND RICE

0.30 -
0.25 - Ry
0.20
0.15 |
0.10 |- Ry
Ro
0.05 ' 4
0 10 20

n{=5X/h)
FI1G. 5. Curves of Ry, R, and Ry, plotted as a function of #, half the number of data points, for
moments estimated by the curve fit method. In this figure @ = 0.2 so that the dimensionless
truncation parameter X/ is given by n(AL/h)=0.2n, or n = 5X/h. These curves are for
S/N=5and §=0.

where

H "

A=at T X (2- D exp|—(i* +)a’ (25)

i=—n j=—n

As we have already mentioned, there is no explicit truncation error, and
whenever there are at least two data points, M and % can be found exactly in
the absence of noise contamination. Figure 5 shows curves of R, R,, and R,
as functions of n for S/N = 5 and a = 0.2, Comparison of these curves with
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those in Fig. 2 shows there is a qualitative difference between the two cases
in that the present curves strictly decrease to a constant value. Furthermore,
the constant value is reached at approximately the optimal truncation point
for numerical integration, i.e., the interval over which data are used should be
at least twice the half-width. In contrast to numerical integration, however,
the taking of additional points does not degrade the precision of any estimate,
although taking too few points does impose a large penalty as seen in the
figure. The curves in Fig. 5 are given for S/N = §; it is trivial to find the effect
of changing S/N since the R’s are proportional to N/S. Figure 6 shows the
asymptotic values of the R’s plotted as a function of a. The curves are
qualitatively similar to those shown in Fig. 4 and the actual values are
themselves quite close. Table 1 contains a more detailed comparison of

0.25
Ry
0.20}-
Rh
0.10 +
RO
1 I { 1 1 j

0
[ 005 0.10 0.15 020 025 0.30

<]

FiG. 6. Curves of Ry, R, and Ry, plotted as a function of a for moments estimated by the curve
fit method. The curves are drawn for S/N = 5.
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TABLE.1

Comparison between Values of Ry, R, and R, Calculated for Estimation by Numerical
Integration (NI) and Curve Fitting (CF)

a S/N  Ro(NI) RG(CF) R,(NI) R,(CF) R,(NI) R,(CF)

0.1 S 0.058 0.080 0.187 0.217 0.075 0.072
10 0.030 0.040 0.115 0.109 0.047 0.036
0.2 5 0.081 0.082 0.235 0.247 0.093 0.095
10 0.042 0.041 0.149 0.123 0.061 0.048

results obtained using the two methods. The differences are small and tend to
favor the method of curve fitting for S/N = 10 while they favor numerical
integration at the lower value of S/N, although the differences are minute.

DISCUSSION

While the differences indicated in Table 1 are operationally insignificant,
we would nevertheless favor the use of curve fitting over that of numerical
integration. This preference is based on the greater sensitivity of numerical
integration to the choice of truncation parameter. We have also used a fairly
simple approach to curve fitting. It is quite possible that a more sophisticated
approach to curve fitting, e.g., using splines and/or smoothing the data, would
lead to greater precision in the estimation of moments. Furthermore, the use
of curve fitting aliows the possibility of removing baseline effects when these
are significant, although it is probable that the use of more parameters would
degrade precision over that reported in the present paper. We have not
discussed estimation of peak position; however, this could also be analyzed
in the present framework at the expense of introducing one more parameter.
We expect that the results would be similar to those obtained for the even
moments. Another important assumption that has been made is that mo-
ments have been estimated from an isolated peak. The presence of nearby
peaks will surely play an important role in determining the precision of
estimates and in the choice of estimator to be used. We have not considered
effects of smoothing, either intentional or through instrumental inertia, on
precision. It is possible that such smoothing might work in either direction,
either increasing or degrading the precision of estimates, as shown in a recent
study of the estimation of peak position in the measurement of chemical shifts
22).
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APPENDIX: DERIVATION OF R, FOR LEAST SQUARES CURVE-
FITTING

For simplicity we derive the expression for R, only, derivation of the
remaining error criteria being quite similar. Assume that the least squares
estimates of M and & are M and A, respectively. Further, let A and % be
expressed as

M =M+ éM, h=nh+68hn (A1)
Then the normalized estimate of the zeroth moment is, to lowest order,

.llo".U«o_aM_*_ﬂ
Mo M h

(A2)

where a term 6M3h/(Mh) has been neglected in comparison to the terms
retained. We must therefore find expressions for 8M and A from the defining
equations. For this purpose we return to Eq. (23), together with the
representation of Eq. (1), for S(x). The basic assumption in this treatment is
that the estimates, M and h, are sufficiently good that the difference
S(x) — S(x) that appears in Eq. (23) can be represented in the form

) oS oS
$(x) = S(x) ~ 5 8M + —= 8k = &(x) (A3)

so that higher order terms have been neglected. The two equations that
determine M and h are

9F, 8
air = 2.Z SUAL) = SGUALY g7 | vminr =0
M.h=M,h

(A4)

=2 2 (S(AL) — S(fAL))Z*; w=iar =0

i=—n M,it=M,h

n

If we introduce the linear approximation in Eq. (A3) into this last
equation, together with the notation
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(AS5)

no/08;\2 2”) <as,.> <asi> é <as,.>z
p— —_— = — A N C:
4 f§n<aM>’ B i——n\ OM oh i=—n\ Oh

then 8M and 8h are the solutions to the set of equations

SM + BSh = E 95,
4 TS tam
as;
BSM + C8h = Z £ E (A6)

From this it follows that

1 ERY EN
6M=—Ee,<c——’——B—'>
A oM oh
1 08, ERY
8h = —2 ¢ A——’—B—’) A7
N 8( on oM (AT)

where A = AC — B?, In consequence of { g > = 0, we find

(m)>=<(8h>=0 (A8)

so that {uy?> = p, in this order of approximation. It is also easy to verify
that, using Eq. (A7),

(SM?*) = ¢*C/A, (Sh?y = PA/A, <(8MSh) = — o?B/A
(A9)

Equation (A2) implies that

<6M2>+2<8M8h) +<6;z2>

M? Mh h? (A10)

R,

On substituting Eq. (A9) into this last equation, together with the defi=ition
of A, B, and C in Eq. (AS5) we find
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o 1 9s, 1 as,\21"”
Ro= 3 {? (JV} o E) } (ALD)
where
1 3S, S, 88, aS,\?
A=tz ( - ) (A12)
2 i @ oM oh oh oM

R ( x? > 08  Mx? ( x? > (A13)
—— = exp| — — — exp| — —
exp © on m OP\T op2

are used to evaluate Eqs. (11) and (12), the result is that given in Eq. (24) of
the text.
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