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Optimal Parameters for the Measurement of the 
Half-Width of a Gaussian Peak 

GEORGE H. WEISS 
NATIONAL INSTITUTES OF HEALTH 
BETHESDA, MARYLAND 20205 

JOHN RICE 
UNIVERSITY OF CALIFORNIA-SAN DIEGO 
LA JOLLA, CALIFORNIA 92093 

Abstract 

The problem of estimating the half-width of a Gaussian peak arises in several areas 
of chromatographic analysis as well as in nuclear magnetic resonance. In this paper we 
contrast two techniques for reducing digital data to obtain the half-width. The first is 
numerical integration and the second is that of curve fitting. In the numerical 
integration technique we find the optimal truncation parameter such that the bias and 
variance balance one another, while for curve fitting one needs to specify how many 
data points to be included in the curve fit. Our investigation shows that the two 
methods give about the same precision but we nevertheless recommend the curve 
fitting approach because it is less sensitive to the parameters used in reducing the 
data. 

INTRODUCTION 

There are many techniques in chemistry and physics in which usehl 
information can be expressed in terms of the moments of an experimentally 
measured peak. For example, resolution in chromatography is generally 
expressed in terms of the moments of two peaks (1-3). There are many 
additional uses suggested for experimentally determined moments in the 
context of chromatography (4, 5 ) .  The diffusion constant in isoelectric 
focusing both in the equilibrium regime (6), and in the transient regime have 
been estimated in terms of variances of Gaussian peaks (7, 8) .  Areas or 
moments are sometimes used in the analysis of data in ultracentrifugation 
(9). The determination of spectral moments plays a central role in the 
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1102 WElSS AND RICE 

interpretation of NMR experiments (10-14). Together with these studies 
there have been several investigations, mainly by simulation, of the effects of 
noise on the calculation of moments from data (15-18). In addition there has 
been a recent experimental study, in the context of NMR, by Hendrickson 
and Tabbey (19). Of particular interest in. this context is the problem of how 
to optimize parameters in the estimation technique so as to minimize the 
effects of digitization error, truncation error, and degradation due to noise. In 
this paper we consider these factors in the estimation of the zeroth and 
second moments of a Gaussian peak with additive noise. Two estimation 
techniques will be considered, the first being that of numerical integration of 
the data and the second being that of curve fitting to the Gaussian form, 
followed by the calculation of moments of the resulting peak. In the use of 
both of these techniques the experimenter needs to know how much of the 
data should be retained to minimize resulting errors. In addition, it is 
sometimes desirable to have an estimate of the error. 

In what follows we will assume that the recorded signal representing a 
single isolated Gaussian peak is of the form 

S(X) = Me-X2/(2h2) + & ( X ) ,  --oo < x < 00 (1)  

where A4 is the maximum amplitude of the noise-free signal and E (x) is the 
noise term. We have also assumed that baseline drift is negligible. The zeroth 
through second unnormalized moments of the noise-free signal are 

and the half-width of the peak is 

Wl12 = 2 v ’ m  = 2 . 3 5 5 h  ( 3 )  

We will make the further assumption that the data are available only at a set 
of uniformly spaced points which we write 

x i = ( i + 8 ) A L ,  i = O , f  1 , + 2  , . . . .  (4) 

where the spacing is AL,, and 8AL is the abscissa of the observed maximum 
of the noise-free signal. Therefore 8 satisfies -% < 8 < %. The noise term at 
the x i  will be written as &(xi) = E ~ .  These random variables will be assumed to 
have the properties - .  

0, i # j  

a2, i = j 
( E i  ) 0, ( E ) E j  ) = 

The signal-to-noise ratio, SIN, will then be MIcr. 
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HALF-WIDTH OF A GAUSSIAN PEAK 1103 

NUMERICAL INTEGRATION 

In the numerical integration method the rth moment will be estimated by 

n 

f i r =  c (iAL)’SiAL 
i=-n 

where S i = S ( x ; ) .  Three sources of error are represented in this formula. 
Digitization error is represented by the parameter 6 and AL (with a 
continuously recorded signal, these are both equal to zero), and the trunca- 
tion error is represented by having the limits set at +n (when n = this error 
is equal to zero). The noise error is that due to the summation over the ci. 
The sum represents a discrete approximation to an integral where the limits 
of integration are &X where X = n u .  

We will write the expression for p, as 

where p, is the true rth moment, Ap,(n, 6 ,  AL) is the combination of 
digitization and truncation errors, and ~ , ( n ,  AL) is the random error. The 
relevant statistical properties of q,. are a direct consequence of Eq. ( 5 ) ,  and 
are easily seen to be 

n 

(8)  (?7 , )  =o ,  ( T + = a (  2 ~ ~ ) 2 r + 2  i2r 
i=-n  

The advantage of the representation in Eq. (7) is that the two components of 
error are additive so that we can determine them separately. Equation ( 5 )  
contains the properties of the random error that will be needed. If we set 
a = ALlh = 2.355AL/W1/2, which is a dimensionless measure of the inte- 
gration interval, then in the absence of noise we have the estimate 

n 

p, = M Z i r ( ~ ~ ) , + l  exp [-(i + 0 ) ~ a ~ / 2 1  (9)  
j=-n 

in which we have used the assumption that (ci ) = 0. Let us consider the 
case r = 0 first. We can write k0 as 
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1104 WEISS AND RICE 

The first sum on the right-hand side of this expression can be rewritten by 
means of a Poisson transformation (15)  as 

We next observe that in any sensible experiment the data points will 
generally be spaced more closely than W1,2/2 which implies that a < 1. 
When this condition holds, the infinite series on the right-hand side of Eq. 
(1 1) will be negligible, the largest term being of the order of lo-'. Thus, to an 
excellent approximation, we can express Po as 

m 

1 (12)  p, = M h d z  - M A L  C [ e - ( i + ~ P a 2 ~ ~  + e - ( i - ~ ) 2 a 2 / 2  

i=n+ I 

or, using the notation in Eq. (7), 

since p o  = M h a .  Similarly we find 

m 

1 (14) 
= - M ( A L ) ~  C, j ~ [ ~ - ( i + 0 ) 2 a 2 / 2  + e - ( i - ~ ) 2 a 2 / 2  

i = n  + 1 

In order to give numerical estimates of the tradeoff between truncation and 
random error, we need a function that contains both factors. For even 
moments it is convenient to use the relative standard deviations 

If we adopt the notation 

ui =exp [-(i + 1 3 ) ~ a ! ~ / 2 ]  + exp [-(i - 8)2a2/2]  (16) 

then we find that Ro and R 2  can be expressed as 

112 

R 2 = =  f f 3  [ ($+, i 2 -  .i) + ( ;&4) (;) '1 
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HALF-WIDTH OF A GAUSSIAN PEAK 1105 

As one would expect, the contribution from the truncation errors decreases 
with increasing n ,  while the contribution due to a finite SIN increases as the 
noise amplitude increases. If one wants to estimate the half-width, or 
equivalently, the parameter h,  one starts from the estimate 

which is exact when there are no errors. When these errors are present, we 
can write the estimate in the form 

where 6p2 and 6po represent all errors. Notice that the errors in the 
numerator and denominator are not independent of one another. On the 
assumption that cYpolpo is small, we can expand the denominator and find 
that to lowest order 

which implies the formula 

It should be noted that the same value of n has been used in the estimates of 
po and p2 in the present treatment. 

Figure 1 shows a schematic representation of the Gaussian peak together 
with the various quantities used to characterize the estimation procedures. In 
practice one would choose a maximum abscissa of integration, X ,  then set n 
to be the least integer greater than XIhL. Figure 2 shows curves of Ro, Rz,  
and R ,  plotted as functions of Xlh .  We found that the variation of these 
values with changes in 0 tended to be much smaller than that with respect to 
Xlh so that the curves shown are for 8 = 0 here and in the remaining figures. 
As one would expect, there is a minimum in each of these curves where the 
truncation and noise errors are at their optimal compromise values. Several 
conclusions can be drawn from the curves in Fig. 1. The first is that the 
minimum in each of the curves occurs at approximately Xlh = 2.25 or 
equivalently, when the interval of integration, 2X, is approximately twice the 
half-width. Although the curves in Fig. 2 are for the specific values cy = 0.2 
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a 
a 

a .  

X 

FIG. 1. Schematic diagram of an isolated Gaussian peak with the definition of the sampling 
interval AL and the half-width W,/2. Since a sampling point occurs at x = 0 in this figure, the 

offset parameter 0 is equal to zero. 

I -.-A 

1 2 3 4 
X /h  

FIG. 2. Curves of the relative rms errors, R,, R2. and R ,  plotted as a function of X/h for 
moments estimated by numerical integration. These curves are for a = 0.2,  S/N = 5, 0 = 0. 
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HALF-WIDTH OF A GAUSSIAN PEAK 1107 

and SIN = 5 ,  the location of the minima do not seem to depend strongly on a 
for SIN > 5 so that our result can be used as a rule of thumb. For example, 
when S/N = 5 or 10, the minima of the curves occurred at  values ranging 
between 2.2 and 2.8 for values of a between 0.05 and 0.30. Although the 
positions of the minima tended to be insensitive to variations in a or SIN, the 
sensitivity to deviations from the minima increased markedly with a. One 
expects also that estimates of higher moments than j l o  will be less accurate, 
hence it is somewhat surprising that the minimum value of Rh is so close to 
that of Ro. However, R, is clearly more sensitive to deviations from the 
minimizing value of X / h  than is R,. The effects of digitization are illustrated 
in Fig. 3 which shows the error parameters Ro, R2,  and R, plotted as 
functions of a (=hL/h  = 2.36hL/WIl2) for XIh at the minimizing value. 

0.: 

0.' 

a 
10 15 

S I N  

numerical integration for a = 0.2 and 8 = 0. 
FIG. 3 .  Curves of Ro, R2,  and Rh plotted as a function of S/N for moments estimated by 
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1108 WEISS AND RICE 

The parameter R,  exceeds 10% only for a > 0.25 or equivalently when there 
are fewer than 10 digital points covering the half-width. 

CURVE FITTING 

An alternative procedure for estimating moments is to use the data to 
estimate parameters of the peak and then calculate the resulting moments 
from the formula so obtained. This option is only available when, as in the 
present case, the functional form of the peak is known. However, the use of 
curve fitting is attractive for several reasons. The foremost of these is that in 
the absence of noise the procedure should, in principle, lead to an exact result 
so that the truncation problem does not arise provided that the number of 
available points exceeds the number of parameters to be estimated. A second 
advantage is that there are several good nonlinear curve fitting routines 
available. A final point is that when the baseline of the curve is not constant, 
one needs to eliminate the effect by some form of curve fitting in any case as 
in the recent paper by Dietrich and Gerhards (21) .  The possibility of curve 
fitting raises the question as to its potential in comparison to numerical 
integration as discussed in the last section. 

To examine this question we have developed the relevant theory for curve 
fitting by unweighted least squares. Specifically, we will assume that one 
wants to fit a curve 

where fi and h are constants to be estimated by a least squares technique. 
That is to say, we minimize the following sum of squares: 

where we have neglected digitization error. When the signal-to-noise ratio is 
sufficiently large we can linearize the differences appearing in this last 
summation, allowing us to calculate the criteria Ro, Rz,  and R,  for this 
technique. In the Appendix we give a more detailed derivation of Ro. Results 
of the calculation are 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
3
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



HALF-WIDTH OF A GAUSSIAN PEAK 

1 12 

R 2  = (4) { 2 i= -n ( ( i ~ ) ~  - 3)2  exp [ - ( i a ) ’ ] / A , }  

112 

R ,  = ( z )  { 2 I =  5 -n exp i-(ia12j/An} 

0.2: 

0.2( 

0.1( 

( I I I 1 1 1 

0.05 0.10 0.15 0.20 0.25 0.30 
a 

1109 

FIG. 4. Curves of Ro, R2, and Rh plotted as a function of the normalized data interval LY for 
moments estimated by numerical integration. The curves are for S/N = 5 .  
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0.3C 

0.25 

o.za 

0.15 

0.10 

0.05 

WEISS AND RICE 

0 10 20 
n(=5X/h) 

FIG. 5 .  Curves of R,, Rz, and Rh plotted as a function of n, half the number of data points, for 
moments estimated by the curve fit method. In this figure (Y = 0.2 so that the dimensionless 
truncation parameter X/h is given by n(AL/h )  = 0.2n. or  n = 5X/h. These curves are for 

S / N = 5  a n d 8 = 0 .  

where 

As we have already mentioned, there is no explicit truncation error, and 
whenever there are at least two data points, M and h can be found exactly in 
the absence of noise contamination. Figure 5 shows curves of R,, R,, and R,  
as functions of n for SIN = 5 and a = 0.2. Comparison of these curves with 
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HALF-WIDTH OF A GAUSSIAN PEAK 1111 

those in Fig. 2 shows there is a qualitative difference between the two cases 
in that the present curves strictly decrease to a constant value. Furthermore, 
the constant value is reached at approximately the optimal truncation point 
for numerical integration, i.e., the interval over which data are used should be 
at least twice the half-width. In contrast to numerical integration, however, 
the taking of additional points does not degrade the precision of any estimate, 
although taking too few points does impose a large penalty as seen in the 
figure. The curves in Fig. 5 are given for SIN = 5 ;  it is trivial to find the effect 
of changing SlN since the R’s are proportional to NlS. Figure 6 shows the 
asymptotic values of the R’s plotted as a function of a. The curves are 
qualitatively similar to those shown in Fig. 4 and the actual values are 
themselves quite close. Table 1 contains a more detailed comparison of 

0.2 

0.2 

0. li 

c I I I I I I 
0 0.05 0.10 0.15 0.20 0.25 0.30 

a 
FIG. 6. Curves ofRo, R2, and Rh plotted as a function of a for moments estimated by the curve 

tit method. The curves are drawn for S/N = 5 .  
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1112 WEISS AND RICE 

TABLE 1 

Comparison between Values of Ro, R z ,  and Rh Calculated for Estimation by Numerical 
Integration ( N I )  and Curve Fitting (CF) 

&'A' R O W )  Ro(CF)  R 2 ( N I )  R 2 ( C F )  Rh(N1)  Rh(CF)  

0.1 5 0.058 0.080 0.187 0.217 0.075 0.072 
10 0.030 0.040 0.1 15 0.109 0.047 0.036 

0.2 5 0.081 0.082 0.235 0.247 0.093 0.095 
10 0.042 0.041 0.149 0.123 0.061 0.048 

results obtained using the two methods. The differences are small and tend to 
favor the method of curve fitting for SIN = 10 while they favor numerical 
integration at the lower value of S / N ,  although the differences are minute. 

DISCUSSION 

While the differences indicated in Table 1 are operationally insignificant, 
we would nevertheless favor the use of curve fitting over that of numerical 
integration. This preference is based on the greater sensitivity of numerical 
integration to the choice of truncation parameter. We have also used a fairly 
simple approach to curve fitting. It is quite possible that a more sophisticated 
approach to curve fitting, e.g., using splines and/or smoothing the data, would 
lead to greater precision in the estimation of moments. Furthermore, the use 
of curve fitting allows the possibility of removing baseline effects when these 
are significant, although it is probable that the use of more parameters would 
degrade precision over that reported in the present paper. We have not 
discussed estimation of peak position; however, this could also be analyzed 
in the present framework at the expense of introducing one more parameter. 
We expect that the results would be similar to those obtained for the even 
moments. Another important assumption that has been made is that mo- 
ments have been estimated from an isolated peak. The presence of nearby 
peaks will surely play an important role in determining the precision of 
estimates and in the choice of estimator to be used. We have not considered 
effects of smoothing, either intentional or through instrumental inertia, on 
precision. It is possible that such smoothing might work in either direction, 
either increasing or degrading the precision of estimates, as shown in a recent 
study of the estimation of peak position in the measurement of chemical shifts 
(22). 
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APPENDIX: DERIVATION OF Ro FOR LEAST SQUARES CURVE- 
FllTlNG 

For simplicity we derive the expression for Ro only, derivation of the 
remaining error criteria being quite similar. Assume that the least squares 
estimates of M and h are fi and h, respectively. Further, let and h be 
expressed as 

Then the normalized estimate of the zeroth moment is, to lowest order, 

where a term 6M6hl(Mh) has been neglected in comparison to the terms 
retained. We must therefore find expressions for 6M and 6h from the defining 
equations. For this purpose we return to Eq. (23), together with the 
representation of Eq. (1  ), for S(x). The basic assumption in this treatment is 
that the estimates, fi and h, are sufficiently good that the difference 
$(x)  - S(x) that appears in Eq. (23) can be represented in the form 

as dS 

aM ah  
3(x) - S ( x )  -- 6M + - 6h  - E ( X )  

so that higher order terms have been neglected. The two equations that 
determine fi and f i  are 

-- a" - 2 ( $ ( i A L )  - S ( i A L ) ) y  x=iAL ah i=-n zE 1 f i ,h=M,h= 

If we introduce the linear approximation in Eq. (A3) into this last 
equation, together with the notation 
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1114 WElSS AND RICE 

then SM and Sh are the solutions to the set of equations 

as, 
, aiw ASM + BSh = ei- 

as, 
BSM + CSh = Z e i -  

I ah 

From this it follows that 

where A = AC - B2. In consequence of ( E; ) = 0, we find 

( S m > =  ( 6 h ) = 0  (A8) 
so that (p,,) = p,, in this order of approximation. It is also easy to verify 
that, using Eq. (A7), 

( 6M2 ) = o2C/A, ( Sh2 ) = $ A / A ,  ( GMSh ) = - cr2B/A 
“49) 

Equation (A2) implies that 

On substituting Eq. (A9) into this last equation, together with the dekition 
of A, B, and C in Eq. (A5) we find 
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HALF-WIDTH OF A GAUSSIAN PEAK 1115 

where 

as, asif as, as,,)’ 
(-412) 

1 
2 i I ’  dM ah dh dM 

A = - z  (- 
When the derivatives 

as X2 dS Mx2 X 2  
- - = e n p ( - s ) ,  aM dh =7 exp (- 3) (A13) 

are used to evaluate Eqs. (1 1) and (12), the result is that given in Eq. (24) of 
the text. 
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